Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons

نویسندگان

  • Josef Ladenbauer
  • Moritz Augustin
  • LieJune Shiau
  • Klaus Obermayer
چکیده

The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Event-Driven Simulations of Nonlinear Integrate-and-Fire Neurons

Event-driven strategies have been used to simulate spiking neural networks exactly. Previous work is limited to linear integrate-and-fire neurons. In this note, we extend event-driven schemes to a class of nonlinear integrate-and-fire models. Results are presented for the quadratic integrate-and-fire model with instantaneous or exponential synaptic currents. Extensions to conductance-based curr...

متن کامل

Exact Simulation of Integrate-and-Fire Models with Exponential Currents

Neural networks can be simulated exactly using event-driven strategies, in which the algorithm advances directly from one spike to the next spike. It applies to neuron models for which we have (1) an explicit expression for the evolution of the state variables between spikes and (2) an explicit test on the state variables that predicts whether and when a spike will be emitted. In a previous wor...

متن کامل

Adaptive Fractional-order Control for Synchronization of Two Coupled Neurons in the External Electrical Stimulation

This paper addresses synchronizing two coupled chaotic FitzHugh–Nagumo (FHN) neurons with weakly gap junction under external electrical stimulation (EES). To transmit information among coupled neurons, by generalization of the integer-order FHN equations of the coupled system into the fractional-order in frequency domain using Crone approach, the behavior of each coupled neuron relies on its pa...

متن کامل

Mean-Field Models for Heterogeneous Networks of Two-Dimensional Integrate and Fire Models

We analytically derive mean-field models for all-to-all coupled networks of heterogeneous, adapting, two-dimensional integrate and fire neurons. The class of models we consider includes the Izhikevich, adaptive exponential, and quartic integrate and fire models. The heterogeneity in the parameters leads to different moment closure assumptions that can be made in the derivation of the mean-field...

متن کامل

One-Dimensional Population Density Approaches to Recurrently Coupled Networks of Neurons with Noise

Mean-field systems have been previously derived for networks of coupled, two-dimensional, integrate-and-fire neurons such as the Izhikevich, adapting exponential (AdEx) and quartic integrate and fire (QIF), among others. Unfortunately, the mean-field systems have a degree of frequency error and the networks analyzed often do not include noise when there is adaptation. Here, we derive a one-dime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012